Evaluation of Deep Reinforcement Learning Methods for Modular Robots
نویسندگان
چکیده
We propose a novel framework for Deep Reinforcement Learning (DRL) in modular robotics using traditional robotic tools that extend state-of-the-art DRL implementations and provide an end-to-end approach which trains a robot directly from joint states. Moreover, we present a novel technique to transfer these DLR methods into the real robot, aiming to close the simulation-reality gap. We demonstrate the robustness of the performance of state-of-the-art DRL methods for continuous action spaces in modular robots, with an empirical study both in simulation and in the real robot where we also evaluate how accelerating the simulation time affects the robot’s performance. Our results show that extending the modular robot from 3 degrees-of-freedom (DoF), to 4 DoF, does not affect the robot’s learning. This paves the way towards training modular robots using DRL techniques.
منابع مشابه
Deep Reinforcement Learning for Robotic Manipulation
Reinforcement learning holds the promise of enabling autonomous robots to learn large repertoires of behavioral skills with minimal human intervention. However, robotic applications of reinforcement learning often compromise the autonomy of the learning process in favor of achieving training times that are practical for real physical systems. This typically involves introducing hand-engineered ...
متن کاملDistributed reinforcement learning for self-reconfiguring modular robots
In this thesis, we study distributed reinforcement learning in the context of automating the design of decentralized control for groups of cooperating, coupled robots. Specifically, we develop a framework and algorithms for automatically generating distributed controllers for self-reconfiguring modular robots using reinforcement learning. The promise of self-reconfiguring modular robots is that...
متن کاملAutomated Design of Adaptive Controllers for Modular Robots using Reinforcement Learning
Designing distributed controllers for self-reconfiguring modular robots has been consistently challenging. We have developed a reinforcement learning approach which can be used both to automate controller design and to adapt robot behavior on-line. In this paper, we report on our study of reinforcement learning in the domain of self-reconfigurable modular robots: the underlying assumptions, the...
متن کاملTowards Cognitive Exploration through Deep Reinforcement Learning for Mobile Robots
Exploration in an unknown environment is the core functionality for mobile robots. Learning-based exploration methods, including convolutional neural networks, provide excellent strategies without human-designed logic for the feature extraction [1]. But the conventional supervised learning algorithms cost lots of efforts on the labeling work of datasets inevitably. Scenes not included in the tr...
متن کاملOn Scalability Issues in Reinforcement Learning for Self-Reconfiguring Modular Robots
Self-reconfiguring modular robots have been receiving great attention because advances in our field are expected to deliver ultra-adaptable and robust systems. There has been remarkable progress in modular hardware and distributed controllers, e.g., [1]–[4], some of which were designed automatically by genetic algorithms, e.g., [1]. But how can the greatest adaptability be achieved? Our positio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.02395 شماره
صفحات -
تاریخ انتشار 2018